Department of Mathematics and Computer Science

Friday, February 24, 2017, 4:10 pm COLLOQUIUM TALK Speaker: Gregory Galperin (EIU) Old Main 2231

The "Look and Say Sequence", Conway's constant, the 92 Audio-active elements, and the Cosmological Theorem

Abstract: One of the most intriguing sequences, the so-called "Look and Say Sequence" or the C-sequence, is Conway's

 $1,\ 11,\ 21,\ 1211,\ 111221,\ 312211,\ 13112221,\ \dots\ .$

It is created, term by term, by the *audioactive operator* \mathcal{A} which transforms each term to the next one by "reading" the previous term as follows:

 $1 \implies one 1 \implies two 1's \implies one 2 one 1 \implies one 1 one 2 two 1's \implies \dots$

The C-sequence has many interesting properties, some of which I will touch in my talk.

Q: Can a C-number has 2017 digits? When 4 will show up in some C-number?

The remarkable thing about the C-sequence is that even though it seems at first glance to be quite arbitrary and non-mathematical, it has some interesting properties unearthed by John Conway. Most notably, he showed that the number of digits in each term on average grows by about 30% from one term to the next; the exact result is formulated as the following

Cosmological Theorem. Let d_n stand for the length of the nth C-number. Then

- (a) the limit $\lambda := \lim_{n \to \infty} d_{n+1}/d_n$ exists;
- (b) the number λ is the <u>unique</u> positive real root of a very specific polynomial of degree 71. The number $\lambda \approx 1.303577269...$ is known as *Conway's constant*.

The crucial point in Conway's proof is that each C-number is made up of one or more of 92 "basic" non-interacting strings (subsequences), or audioactive "elements", called him as the basic 92 chemical elements, from Hydrogen H to Uranium U.

From mathematical point of view, the C-numbers are vectors in 92-dimensional space, the operator $\mathcal{A}: \mathbb{R}^{92} \to \mathbb{R}^{92}$ has a 71-dimensional subspace on which it is irreducible, and the Conway constant λ is actually the maximal positive eigenvalue of the operator A.

SNACKS IN FACULTY LOUNGE AT 3:30 PM. EVERYONE WELCOME (EVEN IF YOU ARE UNABLE TO ATTEND THE TALK)

=