Department of Mathematics and Computer Science

Friday, October 18, 2019, 4:10 pm COLLOQUIUM TALK Speaker: Gregory Galperin (EIU) Old Main 2210

A hidden symmetry in the sequences "*First Digits of* 2^n , 3^n , 4^n , 5^n , ..."

Abstract: The sequence of the <u>last</u> (rightmost) digits of the integers 2^n is **periodic**:

 $(2, 4, 8, 6), (2, 4, 8, 6), \dots$

On the contrary, the sequence of the <u>first</u> (leading) digits of the integers 2^n is <u>chaotic</u>:

2, 4, 8, 1, 3, 6, 1, 5,

QUESTION: Does this chaotic sequence of the first digits contain the digit 7 or the digit 9? If yes, then which digit, 7, 8, or 9, appears more frequently in this sequence?

The same question can be posed for the sequences "First digits of 3^n , of 4^n , of 5^n , ...". Or, generally, we can consider sequences of more than one leading digit and ask similar questions:

• Can 2^n and 3^n both have one or more leading digits of the number $\pi = 3.1415...$, or both have one or more leading digits of the number e = 2.71828...?

• Can 2^n and 5^n both start with the same one or more leading digits and if yes, then what could these digits be? The same question for the triplet 2^n , 3^n , 5^n .

It turns out that to answer to that kind of pure arithmetic questions, one needs to take into consideration special **dynamical systems** on a <u>circle S^1 and on a <u>torus \mathbb{T}^2 </u>.</u>

In my talk, I will associate the above sequences with dynamical systems on the circle and on the torus, and will also tell about my recent discovery of a <u>hidden symmetry</u> in the set of the exponents $\{\mathbf{n}\}$ for the sequences 2^n , 3^n , 4^n , 5^n ,

All the core ideas will be explained on a very elementary level, so everyone, especially students, are very welcome to attend the talk.

SNACKS IN FACULTY LOUNGE AT 3:30 PM. EVERYONE WELCOME (EVEN IF YOU ARE UNABLE TO ATTEND THE TALK)